
HSM2: A Hybrid and Scalable
Metadata Management Method

in Distributed File Systems

Yiduo Wang1, Youxu Chen1, Xinyang Shao1, Jinzhong Chen2,
Liu Yuan3, and Yinlong Xu1(B)

1 School of Computer Science and Technology, University of Science and Technology
of China, AnHui Province Key Laboratory of High Performance Computing,

Hefei, China
{duo,cyx1227,sxy799}@mail.ustc.edu.cn, ylxu@ustc.edu.cn

2 East China Research Institute of Electronic Engineering, Hefei, China
chenjin zhong@126.com

3 China Academy of Electronics and Information Technology, Beijing, China
lyuan@csdslab.net

Abstract. In the bigdata era, metadata performance is critical in mod-
ern distributed file systems. Traditionally, the metadata management
strategies like the subtree partitioning method focus on keeping names-
pace locality, while the other ones like the hash-based mapping method
aim to offer good load balance. Nevertheless, none of these meth-
ods achieve the two desirable properties simultaneously. To close this
gap, in this paper, we propose a novel metadata management scheme,
HSM2, which combines the subtree partitioning and hash-based mapping
method together. We implemented HSM2 in CephFS, a widely deployed
distributed file systems, and conducted a comprehensive set of metadata-
intensive experiments. Experimental results show that HSM2 can achieve
better namespace locality and load balance simultaneously. Compared
with CephFS, HSM2 can reduce the completion time by 70% and achieve
3.9× overall throughput speedup for a file-scanning workload.

Keywords: Metadata management · Distributed file systems ·
Namespace locality · Load balance

1 Introduction

Distributed file systems (DFS) like GFS [10], HDFS [24], Ceph [27] and Lustre
[22] have intensively adopted when building highly scalable and reliable Internet
services in data centers. As shown in Fig. 1, the metadata and data of DFS are
managed by two sets of independent and separated servers, namely, metadata
servers (MDS) and data servers. When accessing a file, a client should first fetch
the file metadata from MDS to understand the layout and data location, and
check the permission. Then, if the file exists and the permission check succeeds,
she can read or write data content by directly interacting with data servers.

c© Springer Nature Singapore Pte Ltd. 2020
H. Shen and Y. Sang (Eds.): PAAP 2019, CCIS 1163, pp. 195–206, 2020.
https://doi.org/10.1007/978-981-15-2767-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-2767-8_19&domain=pdf
https://doi.org/10.1007/978-981-15-2767-8_19

196 Y. Wang et al.

Fig. 1. The architecture of distributed file systems.

In the big data era, small files are dominating the whole file space. For
instance, some studies suggest that the mean file size is around hundreds of
kilobytes or smaller [4,5,8,11,32]. In addition, compared to the data operations,
the metadata operations in file systems are also popular and even account for
more than 50% in the overall file system operations [1,3,13,20]. These two trends
introduce the design of DFS two challenges. First, the metadata service must
host a huge amount of metadata information. Second, it also has to support
high-performance metadata accesses.

To scale out the metadata service, more than one metadata server will be
deployed to jointly host metadata and balance the workload received from clients.
When designing such a metadata service, we should consider three key prob-
lems, which are the metadata partitioning, metadata indexing, and load balance
strategy, respectively. Subtree partitioning is a traditional method to distribute
metadata of files across multiple metadata servers at the subtree or directory
granularity. The benefit of this strategy is to keep better namespace or directory
locality, as the metadata of a directory and files in that directory will co-locate
in the same metadata server. In addition to the subtree partitioning method,
another alternative metadata management method, hash-based mapping, orga-
nizes the directories and files as a flat structure rather than a hierarchical struc-
ture. In detail, the hash-based method partitions and distributes the metadata
by computing hash values of the paths or names of files and directories. Due to
the randomness of hashing functions, the hash-based mapping achieves better
load balance among metadata servers, compared to the subtree-based method.
However, the hash-based method sacrifices the directory locality, because the
metadata of files in the same directory might be placed on different metadata
servers. In summary, the two traditional metadata management methods cannot
achieve good spatial locality and load balance simultaneously.

HSM2: A Hybrid and Scalable Metadata Management Method 197

Fig. 2. Subtree partitioning metadata management.

The close the gap between maintaining good namespace locality and achiev-
ing good load balance, in this paper, we propose a hybrid metadata management
method, HSM2, which partitions metadata and balances workloads via combin-
ing both the subtree partitioning method and the hash-based mapping method.
In short, this hybrid method applies different policies for namespaces at the
different levels of the whole file system metadata hierarchy. For instance, with
regard to directories at the lower-level of the namespace, HSM2 will ensure their
metadata integrity and keep the metadata of files under such a directory reside
in the same metadata server, to keep better namespace locality. In contrast,
regarding directories at the higher level of the namespace, HSM2 adopts the
hash-based mapping to randomly distribute the metadata of different directo-
ries across multiple metadata servers. To demonstrate the benefits of such a
design, we implemented HSM2 in CephFS, a widely deployed distributed file
system. We conducted a comprehensive set of metadata-intensive experiments.
Experimental results show that HSM2 can achieve better namespace locality
and load balance simultaneously. Compared with CephFS, HSM2 can reduce
the completion time by 70% and achieve 3.9× overall throughput speedup for a
file-scanning workload.

The rest of the paper is organized as follows. We describe the background and
motivation of our work in Sect. 2. Then we sketch the design and implementation
details of HSM2 in Sect. 3. In Sect. 4, we report the performance evaluation
results. Finally, we conclude in Sect. 5.

2 Background and Motivation

In this section, we first introduce the two traditional metadata management
methods in distributed file systems. Then we present the motivation of our work

198 Y. Wang et al.

based on results drawn from a comprehensive set of performance evaluation
experiments (Fig. 3).

Fig. 3. Hash-based mapping metadata management.

2.1 Metadata Management Methods

Subtree Partitioning. This method splits the file system directory tree or
namespace into many subtrees, as Fig. 2 shows, and then assigns subtrees to
specific targeted MDS. Each MDS manages a set of subtrees. Because the meta-
data belongs to the same directory is assigned to the same MDS, the subtree
partitioning method maintains good namespace locality. In addition, there are
two variants of the subtree partitioning method, which are static and dynamic
partitioning methods respectively. With regard to the static subtree partitioning
method, the namespace is partitioned manually by the system administrator, like
NFS [18], Sprite [17], AFS [16], Coda [21], CIFS [12] and PanFS [2]. When the
system workload changes dynamically, however, this static partitioning method
could introduce a load imbalance problem. To address this problem, CephFS [27]
proposes a dynamic subtree partitioning method to adjust the subtree splitting
granularity and migrate the metadata across MDS cluster adaptively according
to the real-time workloads. But due to the variance in subtree sizes and real-time
workloads, it is also challenging for this method to keep the metadata servers
load-balanced.

HSM2: A Hybrid and Scalable Metadata Management Method 199

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

A
ve

ra
ge

La
te
nc

y(
m
s)

MDS

CephFS
Lustre

(a) Create

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

A
ve

ra
ge

La
te
nc

y(
m
s)

MDS

CephFS
Lustre

(b) Stat

0

2

4

6

8

1 2 3 4 5

A
ve

ra
ge

La
te
nc

y(
m
s)

MDS

CephFS
Lustre

(c) Mkdir

0

1

2

3

1 2 3 4 5
A
ve

ra
ge

La
te
nc

y(
m
s)

MDS

CephFS
Lustre

(d) Readdir

Fig. 4. File and directory metadata performance comparison under subtree partitioning
and hash-based mapping metadata management methods.

Hash-Based Mapping. Unlike the subtree partitioning method, the hash-
based mapping management strategy distributes the metadata according to the
hash value of the unique file identifiers (i.e., file pathname or inode number). This
method has been deployed in many file systems such as Vesta [9], RAMA [15],
zFS [19], Lazy Hybrid [31], CalvinFS [26], SkyFS [30], Intermezzo [7], ShardFS
[29], Lustre [6], and LocoFS [14]. This management method converts the file sys-
tem directory tree structure into a flat namespace, thus destroying the names-
pace locality, despite evenly balancing workloads across metadata servers. For
example, reading a directory content may need a significant number of commu-
nications between multiple metadata servers.

Next, we explore the benefits and flip-sides of both methods via running a
few experiments and analyzing their results.

2.2 Namespace Locality vs. Load Balance

To understand the difference between the subtree partitioning and hash-based
mapping metadata management methods deeply, we conduct a comprehensive
set of experiments to evaluate the overall file/directory metadata performance
and the load balance factors across multiple metadata servers. For this set of
experiments, we use a popular and widely used file system benchmark, Filebench
[25], to generate the metadata-intensive workload (e.g., create and stat files,
create and traverse directories). The distributed file systems that we evaluate
are CephFS [28] and Lustre [6], respectively, since CephFS uses the subtree
partitioning method, while Lustre adopts the hash-based mapping method.

200 Y. Wang et al.

1

1.2

1.4

1.6

1.8

2 3 4 5

Lo
ad

B
al
an

ce
R
at
e

MDS

CephFS Lustre

Fig. 5. Storage load balance comparison result. The load balance rate is defined as
loadmax
loadavg

[23].

10k

20k

30k

40k

50k

60k

0 25 50 75 100 125 150

M
et
ad

at
a
R
eq

ue
st
s/
s

Time(second)

CephFS(MDS 0)
CephFS(MDS 1)
CephFS(MDS 2)

CephFS(MDS 3)
CephFS(MDS 4)

(a) Ceph

200k

400k

600k

800k

1000k

0 10 20 30 40 50 60 70 80 90 100

M
et
ad

at
a
R
eq

ue
st
s/
s

Time(second)

Lustre(MDS 0)
Lustre(MDS 1)
Lustre(MDS 2)

Lustre(MDS 3)
Lustre(MDS 4)

(b) Lustre

Fig. 6. Workload load balance comparison result.

Namespace Locality. Figure 4 summarizes the latency results about different
metadata operations achieved by two different metadata management methods.
First, as shown in Fig. 4(a), for the create operation, the subtree partitioning
method offers similar latency numbers as the hash-based mapping one. This is
because this operation only contacts a single MDS. As a result, the metadata
access latency of the create operation remains constant when the MDS clus-
ter becomes larger. In contrast, for directory metadata operations, the subtree
partitioning method performs better than the hash-based mapping method. For
example, as depicted in Fig. 4(d), reading whole directory content only needs 1ms
by the subtree partitioning method when deploying 5 MDS. However, with the
same setup, the hash-based mapping method needs almost 5 ms. This is because,
within the subtree partitioning method, the readdir operations only contact a
single MDS, while the hash-based mapping method may have to traverse the file
metadata from all 5 MDS. Consequently, the subtree partitioning method offers
better namespace locality than the hash-based mapping one.

Load Balance. In addition to namespace locality, we also evaluate the storage
and workload load balance performance. For this set of experiments, we run a file
creation workloads via Filebench. Figures 5 and 6 (stacked presentation) show
that compared to the load balance factor of the hash-based mapping method

HSM2: A Hybrid and Scalable Metadata Management Method 201

MDS 1 MDS 2 MDS 3

Hash(low-level directory identifier)

Fig. 7. HSM2 metadata partitioning method.

outperforms the subtree partitioning method. For example, as shown in Fig. 6,
the workloads were distributed evenly across 5 MDS by the hash-based mapping.
However, this is not applied to the subtree partitioning method. This reason is as
follows: When more workloads arrive, the migration process in the subtree par-
titioning method has been triggered. However, this migration does not balance
well the load to all MDS, due to the complex load balance policy and metadata
migration mechanism.

From these experiment results, we observe that the subtree partitioning
method and hash-based mapping method cannot achieve namespace locality and
load balance simultaneously. Therefore, designing an efficient metadata manage-
ment method to close the gap between namespace locality and load balance is
critical and challenging.

3 HSM2

Based on the above observations and reconsideration on metadata server cluster
architecture in Sect. 2, we propose an efficient metadata management method,
HSM2 to make an effective tradeoff between namespace locality and load bal-
ance. We redesign and replace the metadata management module of Ceph, using
HSM2 to determine the MDS to place instead of the original subtree partition-
ing method. In this section, we first introduce the metadata distribution and
indexing methods, then discuss the load balance and scaling strategy.

202 Y. Wang et al.

3.1 Metadata Partitioning

HSM2 splits the file system namespace in the middle level of the namespace
hierarchy into several smaller subtrees on metadata servers to keep namespace
locality, as Fig. 7 shows. Then, HSM2 assigns the metadata of high-level subtree
to the targeted MDS by applying the hash-based mapping method. Inside each
MDS, HSM2 will keep the original subtree structure unchanged. Note that the
subtree splitting granularity is not fixed and HSM2 can adaptively adjust the
subtree granularity to select appropriate subtree sizes, according to the dynamic
workloads. Therefore, compared to the hash-based mapping method, HSM2 can
keep namespace locality, while compared to the subtree partitioning method,
HSM2 can achieve better load balance across different MDSs.

3.2 Metadata Indexing

When a client needs to lookup metadata, it will first search the target metadata
in its metadata cache. If not exist, it will send a request to a certain MDS. Differ-
ent from the original subtree partition method, HSM2 will not send a metadata
request to a random MDS which does not possess the corresponding metadata.
On the contrary, the client could calculate the target MDS which holds the
requested metadata of the corresponding directory through a deterministic hash
algorithm. By this method, unnecessary forwarding requests can be efficiently
reduced. Once MDS receives the metadata request, it first checks whether the
corresponding subtree of the target file already exists in the cache, and read the
metadata into the cache if the check fails. Then MDS will respond to the client’s
request with the expected metadata.

3.3 Load Balance

For the traditional subtree partitioning method, keeping good load balance is a
difficult problem to solve. In recent years, a few metadata migration methods
have been proposed, but the improvement is not guaranteed. HSM2 successfully
avoids this heavy overhead because the partition method offers good load balance
without sacrificing namespace locality.

3.4 Downsides

Due to splitting of subtree, the namespace locality in this level will be destroyed
by HSM2. Nevertheless, compared with hash-based mapping methods, HSM2

successfully controlled the damage to locality to an acceptable extent. Consid-
ering the huge benefits that HSM2 brings, we think it worthwhile.

4 Evaluation

4.1 Experiment Setup

We implement HSM2 and integrate it with CephFS. We conduct experiments on
10 Sungon I60-G20 servers. Each server has two Intel (R) Xeon (R) E5-2650 V4

HSM2: A Hybrid and Scalable Metadata Management Method 203

0

20k

40k

60k

80k

0 20 40 60 80 100 120 140 160 180

M
et
ad

at
a
R
eq

ue
st
s/
s

Elapsed Time(minute)

CephFS

HSM2

Fig. 8. The overall throughput with elapsed time.

CPUs, 64 GB 2133 MHz DDR4 memory space and 12 1TB HDDs. The operating
system is CentOS 7 and kernel is Linux 3.10.0-957.1.3.el7.x86 64. All servers are
connected by 56 Gbps Infiniband network and the communication protocol is
IPoIB. We deploy a metadata server cluster on 2 separated nodes and each of
which deploys multiple MDSs. We also deploy a data server cluster on another
3 physical nodes, each of which runs 2 data servers. The remaining 5 nodes are
used to deploy clients, which issue metadata requests.

We generate a directory-scanning workload in which 100 clients perform
directory traversing operations on a shared dataset which consists of 10,000
directories and almost 1.2 Million files in total, to evaluate CephFS and HSM2

metadata performance.

4.2 Experimental Results

Figure 8 shows the system overall throughput of Ceph and HSM2 with elapsed
time respectively. According to the result, we find that traversing all directory
content needs almost 175 min in CephFS. But HSM2 only needs around 53 min
and can reduce the completion time by 70% compared to CephFS. Besides, HSM2

achieves 3.9× overall throughput speedup compared to the original CephFS.
Furthermore, HSM2 can handle 57k metadata requests per second on average,
but the overall throughput of CephFS is only around 14.4k.

The second primary focus of this evaluation is to understand the load balance
achieved by the new design. To this end, we collect the metadata and workload
distribution on each MDS as time evolves, for both CephFS and HSM2. Figure 9
represents the metadata distribution and IOPS distribution results on each MDS
per second in HSM2. Due to the high-level hash-based mapping method imple-
mented in HSM2, as illustrated in Fig. 9(a), the file system metadata were dis-
tributed evenly across all five metadata servers. In addition to the storage load
balance, Fig. 9(b) highlights that the workloads were also distributed more evenly
across all metadata servers, compared to CephFS (see Fig. 6(a)). As a conse-
quence, the better load balance performance enables more metadata operations

204 Y. Wang et al.

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50#
In
od

es
M
D
S
C
ac

he
d(
M
ill
oi
n)

Elapsed Time(minute)

MDS 0
MDS 1

MDS 2
MDS 3

MDS 4
MDS 5

(a) Metadata distribution

0

20k

40k

60k

80k

0 10 20 30 40 50

M
et
ad

at
a
R
eq

ue
st
s/
s

Elapsed Time(minute)

MDS 0
MDS 1

MDS 2
MDS 3

MDS 4
MDS 5

(b) IOPS distribution

Fig. 9. Workload load balance comparison result.

to be processed in parallel, shortens the completion time and improves the overall
metadata performance.

5 Conclusion

In this paper, we proposed a hybrid and scalable metadata management method
for distributed file systems, HSM2, which combines the subtree partitioning and
hash-based mapping method together to maintain both namespace locality and
load balance. We implemented HSM2 atop of CephFS. The experimental results
show that, compared to CephFS, HSM2 can reduce the completion time of a rep-
resentative file-scanning workload by 70% and achieve 3.9× overall throughput
speedup.

Acknowledgement. This work is supported in part by National Key R&D Program
of China under Grant No. 2018YFB1003204, NSFC under Grant No. 61772484, and
the Joint Funds of CETC under Grant No. 20166141B08080101.

References

1. Abad, C.L., Luu, H., Roberts, N., Lee, K., Lu, Y., Campbell, R.H.: Metadata
traces and workload models for evaluating big storage systems. In: 2012 IEEE Fifth
International Conference on Utility and Cloud Computing, pp. 125–132. IEEE
(2012)

2. Abbasi, Z., et al.: Scalable performance of the panasas parallel file system. In: FAST
2008 Proceedings of the 6th USENIX Conference on File and Storage Technologies,
pp. 17–33 (2008)

3. Alam, S.R., El-Harake, H.N., Howard, K., Stringfellow, N., Verzelloni, F.: Parallel
I/O and the metadata wall. In: Proceedings of the Sixth Workshop on Parallel
Data Storage, pp. 13–18. ACM (2011)

4. Anderson, E.: Capture, conversion, and analysis of an intense NFS workload. In:
FAST, vol. 9, pp. 139–152 (2009)

5. Beaver, D., Kumar, S., Li, H.C., Sobel, J., Vajgel, P., et al.: Finding a needle in
haystack: Facebook’s photo storage. In: OSDI, vol. 10, pp. 1–8 (2010)

HSM2: A Hybrid and Scalable Metadata Management Method 205

6. Braam, P.: The lustre storage architecture. arXiv preprint arXiv:1903.01955 (2019)
7. Braam, P., Callahan, M., Schwan, P., et al.: The intermezzo file system. In: Pro-

ceedings of the 3rd of the Perl Conference, O’Reilly Open Source Convention (1999)
8. Carns, P., Lang, S., Ross, R., Vilayannur, M., Kunkel, J., Ludwig, T.: Small-file

access in parallel file systems. In: 2009 IEEE International Symposium on Parallel
& Distributed Processing, IPDPS 2009, pp. 1–11. IEEE (2009)

9. Corbett, P.F., Feitelson, D.G.: The Vesta parallel file system. ACM Trans. Comput.
Syst. (TOCS) 14(3), 225–264 (1996)

10. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. In: ACM SIGOPS
Operating Systems Review, vol. 37, pp. 29–43. ACM (2003)

11. Harter, T., et al.: Analysis of HDFS under HBase: a Facebook messages case study.
In: FAST, vol. 14, p. 12 (2014)

12. Hertel, C.R.: Implementing CIFS: The Common Internet File System. Prentice
Hall Professional, Upper Saddle River (2004)

13. Leung, A.W., Pasupathy, S., Goodson, G.R., Miller, E.L.: Measurement and anal-
ysis of large-scale network file system workloads. In: USENIX Annual Technical
Conference, vol. 1, pp. 2–5 (2008)

14. Li, S., Lu, Y., Shu, J., Hu, Y., Li, T.: LocoFS: a loosely-coupled metadata service for
distributed file systems. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2017, Denver, CO,
USA, 12–17 November 2017, pp. 4:1–4:12 (2017)

15. Miller, E.L., Katz, R.H.: RAMA: an easy-to-use, high-performance parallel file
system. Parallel Comput. 23(4–5), 419–446 (1997)

16. Morris, J.H., Satyanarayanan, M., Conner, M.H., Howard, J.H., Rosenthal, D.S.,
Smith, F.D.: Andrew: a distributed personal computing environment. Commun.
ACM 29(3), 184–201 (1986)

17. Ousterhout, J.K., Cherenson, A.R., Douglis, F., Nelson, M.N., Welch, B.B.: The
sprite network operating system. Computer 21(2), 23–36 (1988)

18. Pawlowski, B., Juszczak, C., Staubach, P., Smith, C., Lebel, D., Hitz, D.: NFS
version 3: Design and implementation. In: USENIX Summer, Boston, MA, pp.
137–152 (1994)

19. Rodeh, O., Teperman, A.: zFS-a scalable distributed file system using object disks.
In: 2003 Proceedings of 20th IEEE/11th NASA Goddard Conference on Mass
Storage Systems and Technologies (MSST 2003), pp. 207–218. IEEE (2003)

20. Roselli, D.S., Lorch, J.R., Anderson, T.E., et al.: A comparison of file system
workloads. In: USENIX Annual Technical Conference, General Track, pp. 41–54
(2000)

21. Satyanarayanan, M.: Coda: a highly available file system for a distributed worksta-
tion environment. In: Proceedings of the Second Workshop on Workstation Oper-
ating Systems, pp. 114–116. IEEE (1989)

22. Schwan, P., et al.: Lustre: building a file system for 1000-node clusters. In: Pro-
ceedings of the 2003 Linux Symposium, vol. 2003, pp. 380–386 (2003)

23. Shen, Z., Shu, J., Lee, P.P.: Reconsidering single failure recovery in clustered file
systems. In: 2016 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 323–334. IEEE (2016)

24. Shvachko, K., Kuang, H., Radia, S., Chansler, R., et al.: The hadoop distributed
file system. In: MSST, vol. 10, pp. 1–10 (2010)

25. Tarasov, V.: Filebench (2018). https://github.com/filebench/filebench
26. Thomson, A., Abadi, D.J.: CalvinFS: consistent WAN replication and scalable

metadata management for distributed file systems. In: 13th USENIX Conference
on File and Storage Technologies (FAST 2015), pp. 1–14 (2015)

http://arxiv.org/abs/1903.01955
https://github.com/filebench/filebench

206 Y. Wang et al.

27. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D., Maltzahn, C.: Ceph: a scalable,
high-performance distributed file system. In: Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, pp. 307–320. USENIX Association
(2006)

28. Weil, S.A., Pollack, K.T., Brandt, S.A., Miller, E.L.: Dynamic metadata man-
agement for petabyte-scale file systems. In: Proceedings of the 2004 ACM/IEEE
Conference on Supercomputing, p. 4. IEEE Computer Society (2004)

29. Xiao, L., Ren, K., Zheng, Q., Gibson, G.A.: ShardFS vs. indexFS: replication vs.
caching strategies for distributed metadata management in cloud storage systems.
In: Proceedings of the Sixth ACM Symposium on Cloud Computing, pp. 236–249.
ACM (2015)

30. Xing, J., Xiong, J., Sun, N., Ma, J.: Adaptive and scalable metadata management
to support a trillion files. In: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, p. 26. ACM (2009)

31. Xue, L., Brandt, S.A., Miller, E.L., Long, D.D.: Efficient metadata management
in large distributed file systems. In: Twentieth IEEE/Eleventh NASA Goddard
Conference on Mass Storage Systems and Technologies (2003)

32. Zhang, S., Catanese, H., Wang, A.I.A.: The composite-file file system: decoupling
the one-to-one mapping of files and metadata for better performance. In: FAST,
pp. 15–22 (2016)

